【例1】某厂一台透平压缩机组整体布置如图1所示。机组年度检修时,除正常检查、调整工作外,还更换了连接压缩机高压缸和低压缸之间的联轴器的连接螺栓,对轴系的转子对中情况进行了调整等。
图1 机组布置示意图
检修后启动机组时,透平和压缩机低压缸运行正常,而压缩机高压缸振动较大(在允许范围内);机组运行一周后压缩机高压缸振动突然加剧,测点4、5的径向振动增大,其中测点5振动值增加两倍,测点6的轴向振动加大,透平和压缩机低压缸的振动无明显变化;机组运行两周后,高压缸测点5的振动值又突然增加一倍,超过设计允许值,振动剧烈,危及生产,如图2所示。
图2 异常振动特征
压缩机高压缸主要振动特征如下:(1)连接压缩机高、低压缸之间的联轴器两端振动较大;(2)测点5的振动波形畸变为基频与倍频的叠加波,频谱中2频谐波具有较大峰值;(3)轴心轨迹为双椭圆复合轨迹;(4)轴向振动较大。
压缩机高压缸主要振动特征如下:
(1)连接压缩机高、低压缸之间的联轴器两端振动较大;
(2)测点5的振动波形畸变为基频与倍频的叠加波,频谱中2频谐波具有较大峰值;
(3)轴心轨迹为双椭圆复合轨迹;
(4)轴向振动较大。
诊断意见:压缩机高压缸与低压缸之间转子对中不良,联轴器发生故障,必须紧急停机检修。
检修人员做好准备工作后,操作人员按正常停机处理。根据诊断结论,重点对机组联轴器局部解体检查发现,连接压缩机高压缸与低压缸之间的联轴器(半刚性联轴器)固定法兰与内齿套的连接螺栓已断掉3只。
复查转子对中情况,发现对中严重超差,不对中量大于设计要求16倍。
同时发现连接螺栓的机械加工和热处理工艺不符合要求,螺纹根部应力集中,且热处理后未进行正火处理,金相组织为淬火马氏体,螺栓在拉应力作用下脆性断裂。
处理措施:重新对中找正高压缸转子,并更换符合技术要求的连接螺栓。
生产验证:重新启动后,机组运行正常,避免了一次恶性事故。
【例2】某厂汽轮机,通过刚性联轴器与发电机相连,转速为3000r/min。
在图3所示的各测点上检测,经与机组运行正常时的检测结果对比发现,测点2和3处的振值显著增加,且测点3处振值增加量大于测点2处振值增加量。因此,选测点3的检测结果予以分析。鉴于测点3的振动速度有效值在水平、垂直、轴向三个方向上,呈现有V水平>V轴向>V垂直的规律性,为此特以测点3水平方向的检测结果进行对比分析。
图3 2#发电机组测点布置简图
时域图分析:如图4所示,机组运行正常时,测点3时域图上显示最大振动速度有效值Vrms=0.7mm/s,时域波形呈现为比较规则的正弦波;而在图5中,发电机组运行正常时的规则正弦波受到了破坏,其波形呈现转子工频fr和2fr的叠加波形,其波形上半周呈现出明显的M型,最大振动速度有效值Vrms=5.6mm/s,是发电机组正常振值的8倍。
图4 机组运行正常时测点3的时域图(上为水平,下为垂直,下同)
图5 机组振动异常时测点3的时域图(垂直未测)
一般说来,单纯不平衡的振动波形基本上是正弦波;单纯不对中的振动波形比较稳定、光滑、重复性好,呈现"M"型;转子组件松动及干摩擦产生的振动波形比较毛糙、不平衡、不稳定,出现削波现象;而自激振动,如油膜涡动、油膜振荡等,振动波形比较杂乱,重复性差,波动大。
由图5与图4的时域波形和振动速度有效值的对比,结合波形分析法中的规律特征,初步判断是发电机组转子不对中。
频域图分析:如图6所示,发电机转子的工作转频为fr=48.8Hz(频率分辨率为5HZ),其对应振动速度值v=0.3mm/s;2倍频2fr =97.7Hz,其对应振动速度值为v=0. 1 mm/s, 3、4、5等高次谐波所对应的振动速度值均小于0.1mm/s。在图7中可见,转子的2fr、3 fr倍频处,其对应的振动速度值均增加为v=1. 3mm/s;在工频fr和4 fr处对应的振值均为v=0.9mm/s。可见振动异常时转子2倍频处的振值是正常值的13倍;其他倍频处的振值也较正常时高数倍。
图6 机组运行正常时测点3的幅值谱(垂直未测)
图7 机组振动异常时测点3的幅值谱(垂直未测)
依据图7和图6的对比结果,参照转子不对中故障时的振动特征,结合2#发电机组测点3处频谱特征主要表现为转子转频的两倍,且伴有一次及高次谐波,可判断发电机组转子不对中。
诊断意见:根据以上时域图和频域图的分别对比分析,可推断发电机组转子存在不对中故障,即发电机转子与汽轮机转子轴系不对中。经分析,造成2#发电机组转子不对中的主要原因是热机保温不良使基础变形不均所致。
处理措施:参照ISO 2372-1974(E)振动烈度评定标准,其振值跨入注意区,无需立即停机检修,但应加强监护。利用计划检修时机,对发电机组采取了热机保温措施。
生产验证:振源消除,振值显著减小至正常状态值。